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Abstract

We use the minimal instruction set F-4 computer to define a minimal Turing complete
T7 computer suitable for genetic programming (GP) and amenable to theoretical analy-
sis. Experimental runs and mathematical analysis of the T7, show the fraction of halting
programs is drops to zero as bigger programs are run.

1 Introduction

Recent work on strengthening the theoretical underpinnings of genetic programming (GP) has
considered how GP searches its fitness landscape [Langdon and Poli, 2002; McPhee and Poli,
2001; McPhee et al., 2001; McPhee and Poli, 2002; Rosca, 2003; Sastry et al., 2003; Greene, 2004;
Poli et al., 2004; Mitavskiy and Rowe, 2005; Daida et al., 2005]. Results gained on the space of
all possible programs are applicable to both GP and other search based automatic programming
techniques. We have proved convergence results for the two most important forms of GP, i.e.
trees (without side effects) and linear GP [Langdon and Poli, 2002; Langdon, 2002a; Langdon,
2002b; Langdon, 2003b; Langdon, 2003a]. As remarked more than ten years ago [Teller, 1994],
it is still true that few researchers allow their GP’s to include iteration or recursion. Indeed
there are only about 50 papers (out of 4631) where loops or recursion have been included in
GP. These are listed in Appendix B. Without some form of looping and memory there are
algorithms which cannot be represented and so GP stands no chance of evolving them.

We extend our results to Turing complete linear GP machine code programs. We analyse
the formation of the first loop in the programs and whether programs ever leave that loop.
Mathematical analysis is followed up by simulations on a demonstration computer. In particular
we study how the frequency of different types of loops varies with program size. In the process
we have executed programs of up to 16 777 215 instructions. These are perhaps the largest
programs ever (deliberately) executed as part of a GP experiment. (beating the previous largest
of 1 000 000 [Langdon, 2000]). Results confirm theory and show that, the fraction of programs
that produce usable results, i.e. that halt, is vanishingly small, confirming the popular view
that machine code programming is hard.

The next two sections describe the T7 computer (see Figure 1) and simulations run on it,
whilst Sections 4 and 5 present theoretical models and compare them with measurement of
halting and non-halting programs. The implications of these results are discussed in Section 6
before we conclude (Section 7).

1

http://www.cs.essex.ac.uk/staff/W.Langdon/
http://www.cs.essex.ac.uk/staff/rpoli/


9

10

11

12

13

14

CPU

8

0

1

2

3

4

5

6

7Start

Program counter

0

8

16

24

32

40

48

56

64

72

80

88

ADD

Overflow flag

ProgramMemory (12 bytes=96bits)

BVS 3

STi 26,   21

LDi 79,   14

CPY 88,   55

JMP 53

ADD 72,27 45

CPY 78,    2

LDi  3,    9

CPY  0,   20

BVS 6

Figure 1: The T7 computer and sample program

2 T7 an Example Turing Complete Computer

To test our theoretical results we need a simple Turing complete system. Our seven in-
struction CPU (see Table 1) is based on the Kowalczy F-4 minimal instruction set computer
http://www.dakeng.com/misc.html cf. Tables 2–4 in Appendix A. T7 consists of: directly
accessed bit addressable memory (there are no special registers), a single arithmetic operator
(ADD), an unconditional JUMP, a conditional Branch if oVerflow flag is Set (BVS) jump and
four copy instructions. COPY PC allows a programmer to save the current program address for
use as the return address in subroutine calls, whilst the direct and indirect addressing modes
allow access to stack and arrays.

In these experiments 8 bit data words are used, while a number of program addresses word
sizes are used. In fact, in each run, the address words size is chosen to be just big enough to be
able to address every instruction in the program. E.g., if the program is 300 instructions, then
BVS, JUMP and COPY PC instructions use 9 bits. These experiments use 12 bytes (96 bits)
of memory (plus the overflow flag).

3 Experimental Method

There are simply too many programs to test all of them. Instead we gather representative
statistics about those of a particular length by randomly sampling programs of that length.
Then we sample those of another length and so on, until we can build up a picture of the whole
search space.

To be more specific, one thousand programs of each of various lengths
(30. . . 16 777 215 instructions) are each run from a random starting point, with random in-
puts, until either they reach their last instruction and stop, an infinite loop is detected or an
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Instruction #operands operation v set
ADD 3 A + B→C v
BVS 1 #addr→pc if v=1
COPY 2 A→B
LDi 2 @A→B
STi 2 A→@B
COPY PC 1 pc→A
JUMP 1 addr→pc

Each operation has up to three arguments. These are valid addresses of memory locations.
Every ADD operation either sets or clears the overflow bit v. LDi and STi, treat one of their
arguments as the address of the data. They allow array manipulation without the need for
self modifying code. cf. Table 4. (LDi and STi data addresses are 8 bits.) To ensure JUMP
addresses are legal, they are reduced modulo the program length.

Table 1: T7 Turing Complete Instruction Set

individual instruction has been executed more than 100 times. (In practise we can detect almost
all infinite loops by keeping track of the machine’s contents, i.e. memory and overflow bit. We
can be sure the loop is infinite, if the contents is identical to what it was when the instruction
was last executed.) The programs’ execution paths are then analysed. Statistics are gathered
on the number of instructions executed, normal program terminations, type of loops, length of
loops, start of first loop, etc.

4 Terminating Programs

The introduction of Turing completeness into GP raises the halting problem, in particular how
to assign fitness to a program which may loop indefinitely [8]. We shall give a lower bound on
the number of programs which, given arbitrary input, stop, and show how this varies with their
size.

The T7 instruction set has been designed to have as little bias as possible. In particular, given
a random starting point a random sequence of ADD and copy instructions will create another
random pattern in memory. The contents of the memory is essentially uniformly random. I.e.
the overflow v bit is equally likely to be set as to be clear, and each address in memory is
equally likely. (Where programs are not exactly a fraction of a power of two long, JUMP
and COPY PC addresses cannot completely fill the number of bits allocated to them. This
introduces a slight bias in favour of lower addresses.) So, until correlations are introduced
by re-executing the same instructions, we can treat JUMP instructions as being to random
locations in the program. Similarly we can treat half BVS as jumping to a random address.
The other half do nothing. We will start by analysing the simplest case of a loop formed by
random jumps. First we present an accurate Markov chain model, then Section 4.2 gives a
less precise but more mathematical model. Section 4.3 considers the run time of terminating
programs.
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Figure 2: Probability tree used to create Markov model of the execution of random Turing
complete programs. HALT indicates a terminating program, while SINK means the start of a
loop.

4.1 Markov Chain Model of Non-Looping Programs

The Markov chain model predicts how many programs will not loop and so halt. This means
it, and the following segments model, do not take into account those programs which are able
to escape loops and do reach the end of the program and stop. As a program runs, the model
keeps track of: the number of new instructions it executes, if it has repeated any, and if it
has stopped. The last two states are attractors from which the Markov process cannot escape.
State i means the program has run i instructions without repeating any. The next instruction
will take the program from state i either to state i + 1, to SINK or to HALT. In our model
the probabilities of each of these transitions depends only on i and the program length L,
see Figure 2. We construct a (L + 2) × (L + 2) Markov transition matrix T containing the
probabilities in Figure 2. The probabilities of reaching the end of the program (HALT) or the
looping (SINK) are given by two entries in TL. Figure 3 shows our Markov chain describes the
fraction of programs which never repeat any instructions very well.

4.2 Segment Model of Non-Looping Programs

As before, we assume half BVS instructions cause a jump. So the chance of program flow not
being disrupted is 11/14. Thus the average length of uninterrupted random sequential instruc-
tions is

∑L/2
i=1 i (11/14)i−1 3/14. We can reasonably replace the upper limit on the summation

by infinity to give the geometric distribution (mean of 14/3 = 4.67 and standard deviation√
142/32 × 11/3 = 8.94).
For simplicity we will assume the program’s L instructions are divided into L/4.67 segments.

Two thirds end with a JUMP and the remainder with an active BVS (i.e. with the overflow
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bits set). The idea behind this simplification is that if we jump to any of the instructions in
a segment, the normal sequencing of (i.e. non-branching) instructions will carry us to its end,
thus guaranteeing the last instruction will be executed. The chance of jumping to a segment
that has already been executed is the ratio of already executed segments to the total. (This
ignores the possibility that the last instruction is a jump. We compensate for this later.)

Let i be the number of instructions run so far divided by 4.67 and N = L/4.67. At the end
of each segment, there are three possible outcomes: either we jump to the end of the program
(probability 1/N) and so stop its execution; we jump to a segment that has already been run
(probability i/N) so forming a loop; or we branch elsewhere. The chance the program repeats
an instruction at the end of the ith segment is

=
i

N
(1− 2

N
)(1− 3

N
) . . . (1− i

N
)

I.e. it is the chance of jumping back to code that has already been executed (i/N) times the
probability we have not already looped or exited the program at each of the previous steps.
Similarly the chance the program stops at the end of the ith segment is

1
N

(1− 2
N

)(1− 3
N

) . . . (1− i

N
) =

1
N i

(N − 2)!
(N − i− 1)!

=
(N − 2)!
NN−1

NN−1−i

(N − i− 1)!

= (N − 2)!N1−NeNPsn(N − i− 1, N)

Where Psn(k, λ) = e−λλk/k! is the Poisson distribution with mean λ.

5



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Figure 4: Poisson distribution, with mean=5. Note region 0 to mean-2 corresponding to the
segments model of non-looping programs.

The chance the program stops at all (ignoring both the possibility of leaving the first loop
and of other loops for the time being) is simply the sum of all the ways it could stop

N−1∑
i=1

(N − 2)!N1−NeNPsn(N − i− 1, N) = (N − 2)!N1−NeN
N−2∑
j=0

Psn(j,N)

For large mean (N)
∑N−2

j=0 Psn(j, N) approaches 1/2 (see Figure 4). Therefore the chance of long
programs not looping is (using Gosper’s approximation
n! ≈

√
(2n + 1/3)π nne−n and that for large x (1− 1/x)x ≈ e−1)

(N − 2)!N1−NeN

N−2∑
j=0

Psn(j,N)


≈ 1/2(N − 2)!N1−NeN

≈
√

π(2N − 11/3)
(

N − 2
e

)N−2

N1−NeN

= 1/2
√

π(2N − 11/3) (N − 2)N−2e−N+2N1−NeN

= 1/2
√

π(2N − 11/3) (N − 2)N−2N−(N−2)N−1e2

= 1/2
√

π(2N − 11/3)
(

N − 2
N

)N−2

N−1e2

= 1/2
√

π(2N − 11/3) (1− 2/N)N−2N−1e2

= 1/2
√

π(2N − 11/3) (1− 2/N)N/2(1− 2/N)N/2(1− 2/N)−2N−1e2

= 1/2
√

π(2N − 11/3) e−1e−1(1− 2/N)−2N−1e2

= 1/2
√

π(2N − 11/3) (1− 2/N)−2N−1

= 1/2
√

π(2N − 11/3) (N(1− 2/N))−2N1

= 1/2
√

π(2N − 11/3) (N − 2)−2N1

= 1/2
√

2π(N − 11/6) (N − 2)−2N1

≈ 1/2
√

2π
√

N

(
1− 11

12N

)
N−2

(
1 +

4
N

)
N1
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= 1/2
√

2πN−0.5
(

1− 11
12N

)(
1 +

4
N

)
= 1/2

√
2π/N

(
1− 11

12N

)(
1 +

4
N

)
≈ 1/2

√
2π/N

(
1 +

48− 11
12N

)
≈ 1/2

√
2π/N

(
1 +

37
12N

)
That is (ignoring both the possibility of leaving the first loop and of other loops for the
time being) the probability of a long random T7 program of length L stopping is about
1/2

√
2π14/3L

(
1 + 37×14

36L

)
=
√

7π/3L (1 + 259/18L). As mentioned above, we have to con-
sider explicitly the 3/14 of programs where the last instruction is itself an active jump. In-
cluding this correction gives the chance of a long program not repeating any instructions as
≈ 11/14

√
7π/3L (1 + 259/18L). Figure 3 shows this

√
length scaling fits the data reasonably

well.

4.3 Average Number of Instructions run before Stopping

The average number of instructions run before stopping can easily be computed from the Markov
chain. This gives an excellent fit with the data (Figure 5). However, to get a scaling law, we
again apply our segments model.

The mean number of segments evaluated by programs that do halt is:∑N−1
i=1 i/N

∏i
j=2(1− j/N)∑N−1

i=1 1/N
∏i

j=2(1− j/N)

Consider the top term for the time being

N−1∑
i=1

i/N
i∏

j=2

(1− j/N)

= 1/N
N−1∑
i=1

i exp

 i∑
j=2

log(1− j/N)


< 1/N

N−1∑
i=1

i exp

 i∑
j=2

−j/N


= 1/N

N−1∑
i=1

i exp
(
− i(i + 1)− 2

2N

)

= 1/N
N−1∑
i=1

i exp

(
− i2

2N

)
exp

(
− i

2N

)
exp

(
+2
2N

)

= 1/Ne
1
N

N−1∑
i=1

i exp

(
− i2

2N

)
exp

(
− i

2N

)

< 1/Ne
1
N e−

1
2N

N−1∑
i=1

i exp

(
− i2

2N

)
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= e
1

2N 1/N
N−1∑
i=1

i exp

(
− i2

2N

)

≈ e
1

2N 1/N

∫ N−1/2

1/2
xe−x2/2Ndx

= e
1

2N 1/N
[
−Ne−x2/2N

]N−1/2

1/2

= e
1

2N

[
e−x2/2N

]1/2

N−1/2

= e
1

2N

(
e−1/8N − e−(N−1/2)2/2N

)
≈ e

3
8N

Dividing e
3

8N by the lower part (the probability of a long program not looping) gives an
upper bound on the expected number of segments executed by a program which does not enter
a loop:

≈ e3/8N

1/2
√

2π/N
(
1 + 37

12N

)
≈ 2(1 + 3/8N)(1− 37/12N)

√
N/2π

≈ (1 + 9/24N − 74/24N)
√

2N/π

= (1− 65/24N)
√

2N/π

≈ 0.8
√

N

Replacing the number of segments N (N = 3L/14) by the the number of instructions L
gives 14/3 ×

√
2/π

√
3/14

√
L =

√
28/3π

√
L ≈ 1.72

√
L. Figure 5 shows, particularly for large

random programs, this gives a good bound for the T7 segments model. However the segments
model itself is an over estimate.

Neither the segments model, nor the Markov model, take into account de-randomisation of
memory as more instructions are run. This is particularly acute since we have a small memory.
JUMP and COPY PC instructions introduce correlations between the contents of memory and
the path of the program counter. These make it easier for loops to form.

4.4 How random is memory?

Our models assume that the contents of memory is random. Figure 6 shows this assumption
is valid initially. However as random instructions are executed the number of bits set tends to
wonder away from its initial setting, cf. Figure 7. Where legal program addresses do not fit
exactly into the power of two allocated to them, the upper bits of random addresses are more
likely to be zero than 1/2. This means COPY PC instructions tend to inject more zeros into
memory. This leads to the slight asymmetry seen in one plot in Figure 6. Figure 8 shows that
while memory appears random at a given time, its contents is correlated from one time to the
next. A simple model based on the chance of random instructions over writing addresses stored
in memory predicts, in large programs, an address will survive on average ≈ 5 instructions.
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5 Loops

5.1 Code Fragments which Form Loops

If a BVS or an unconditional JUMP instruction jumps to an instruction that has been previously
obeyed, a loop is formed. Unless something is different the second time the instruction is reached
(e.g. the setting of the overflow flag) the program will obey exactly the same instruction sequence
as before, including calculating the same answers, and so return to start of the loop again. Again,
if nothing important has changed, the same sequence of instructions will be run again and an
infinite loop will be performed. Automated analysis can, in most cases, detect if changes are
important and so the course of program execution might change, so enabling the program to
leave the loop.

We distinguish loops using the instruction which formed the loop. I.e. the last BVS or
JUMP. There are two common ways JUMP can lead to a loop: either the program goes to an
address which was previously saved by a LOAD PC instruction or it jumps to an address which
it has already jumped to before. I.e. the two JUMP instructions take their target instruction
from the same memory register. A loop can be formed even when one JUMP address is slightly
different from the other. Therefore we subdivide the two types of JUMP loops into three sub-
classes: those where we know the address register has not been modified, those where the least
significant three bits might have been changed, and the rest. See Figure 9.

5.2 Number of Instructions Before the First Loop

While BVS loops are longer and so might be expected to appear later in a program’s execution,
those we see, appear at about the same time as other types of loop, cf. Figure 10. However,
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Figure 11: Example of a randomly formed BVS loop. As long as the overflow bit is set by
ADDing the contents memory 69 and memory 63 the program will loop but, once the loop is
formed, they do not change.

especially in long programs, BVS loops are bigger than the others, so we see far fewer of them
(cf. Figure 9). That is, the competition inherent in selecting the first loop tends to make the
observed mean of each type of loop behave like the fastest.

5.3 COPY PC and JUMP Loops

As Figure 9 shows, almost all long programs get trapped in either a COPY PC or a JUMP
loop. The COPY PC instruction lends itself readily to the formation of loops, since once its
address has been saved, it can be used by a subsequent JUMP instruction. Less obvious is the
JUMP JUMP loop. This is formed by jumping to a (possibly random) address taken from a
memory location followed some time later by another JUMP using the same memory location.
Since the first JUMP is just before the first repeated instruction a JUMP-JUMP loop appears
to be one instruction shorter than a COPY PC-JUMP loop. Both require an address in memory
not to be disrupted before the second JUMP needs it. As before this gives rise to a geometric
distribution (cf. Figure 14). Figures 11–13 give examples of the common types of loop. We
can approximately model the lengths of both types of loops. In both cases very short loops are
predicted. We would expect, since there is less chance to disrupt memory, tight loops to be
more difficult to escape.
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Figure 14: Mean and standard deviation of the number of T7 instructions before the first loop.
In a geometric distribution the mean and standard deviation are almost equal (dotted line).

Let M = #bits = 96, A = size of program address, D = data size = 8. Assume the
chance of a loop containing i instructions = chance appropriate JUMP × (chance loop not
already formed and memory not disturbed)i−1. It is very difficult to calculate the probability
of another loop forming before the one of interest. Instead we will just model the random
disruption of the address stored in memory by a COPY PC instruction. We assume every
memory update is with random data and (conservatively) assume changing a single bit totally
destroys the address of the start of the loop. There are seven instructions, four of which write D
bits and COPY PC which writes A bits (BVS and JUMP do not change memory). If the overlap
between an address and the written area is one bit, there is a 50% chance of not changing the
address. If the overlap is two bits, then this is reduced to 25% and so on. Since

∑
2−i quickly

approaches 1, we may approximate the effect of random write patterns exactly matching the
original contents of memory by treating each edge of the address as if it was one bit smaller.
I.e. as if the actual address size was A−2 bits, rather than A. Thus the chance of a random ADD
modifying an address held in memory is about ((A− 2) + D − 1)/M and a random COPY PC
it is about ((A− 2) + A− 1)/M .

Thus the chance of a random instruction modifying the address is (4(A+D−3)+2A−3))/7M
= (6A + 4D − 15)/7M . The chance of not modifying it is 1− (6A + 4D − 15)/7M .

Therefore the chance of a COPY PC-JUMP loop being exactly i instructions long is about:

=
1

7M
(1− (6A + 4D − 15)/7M)i−1

Note this is a geometric distribution, with mean 7M/(6A+4D− 15). For the longest programs
A = 24, suggesting the mean length will be 161/672=4.17. In fact, we measure 4.74 ± 0.16.
Figure 15 shows considering the disruption of addresses in memory by random instructions
yields approximate models of the length of most loops, particularly in large random programs.
However (note we are only considering the first loop) this simple model does not fully capture
the competition between different loops. The mean length for JUMP-JUMP loops will be one
less (lower curve in Figure 15). In other words, the vast majority of programs in the whole search
space (which is dominated by long programs) fall into loops with fewer than 20 instructions.
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6 Discussion

Of course the undecidability of the Halting problem has long been known. More recently work
by Chaitin [Chaitin, 1988] started to consider a probabilistic information theoretic approach.
However this is based on self-delimiting Turing machines (particularly the “Chaitin machines”)
and has lead to a non-zero value for Ω [Calude et al., 2002] and postmodern metamathematics.
Our approach is firmly based on the von Neumann architecture, which for practical purposes
is Turing complete. Indeed the T7 computer is similar to the linear GP area of existing Turing
complete GP research.

While the numerical values we have calculated are specific to the T7, the scaling laws
are general. Given time and resources it would be nice to perform similar experiments with
more memory and on different computers. Obviously include a halt instruction will change the
proportions radically but leads to many random programs terminating but having run only a
handful of instructions. Our results are also very general in the sense that they apply to the
space of all possible programs and so are applicable to both GP and any other search based
automatic programming techniques.

Section 4 has accurately modelled the formation of the first loops in program execution.
Section 5 shows in long programs most loops are quite short but we have not yet been able to
quantitatively model the programs which enter a loop and then leave it. However we can argue
recursively that once the program has left a loop it is back almost where it started. That is,
it has executed only a tiny fraction of the whole program, and the remainder is still random
with respect to its current state. Now there may be something in the memory which makes it
to easier to exit loops, or harder to form them in the first place. For example, the overflow flag
not being set. However we would expect the flag to be randomised almost immediately. Also
initial studies, c.f. Section 4.4, indicate the rest of the memory remains randomised. That is
having left one loop, we expect the chance of entering another to be much the same as when
the program started, i.e. almost one. Thus the program will stumble from one loop to another
until it gets trapped by a loop it cannot escape. As explained in Section 5, we expect, in long
programs, it will not take long to find a short loop from which it is impossible to escape.

Real computer systems lose information (converting into heat). We expect this to lead to
further convergence properties in programming languages with recursion and memory.

7 Conclusions

Our models and simulations of a Turing complete linear GP system based on practical von Neu-
mann computer architectures, show that the proportion of halting programs falls towards zero
with increasing program length. However there are exponentially more long programs than
short ones. This means in absolute terms the number of halting programs increases with their
size (cf. Figure 17) but, in probabilistic terms, the Halting problem is decidable: von Neumann
programs do not terminate with probability one.

In detail: the proportion of halting programs is ≈ 1/
√

length, while the average and standard
deviation of the run time of terminating programs grows as

√
length. This suggests a limit on run

time of, say, 20 times
√

length instruction cycles, will differentiate between almost all halting
and non-halting T7 programs. E.g. for a real GHz machine, if a random program has been
running for a single millisecond that is enough to be confident that it will never stop.
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A Turing Equivalence of T7 and F-4

Table 2 describes the Turing complete minimal instruction set computer (MISC) F-4. Table 3
shows each F-4 instruction can be expressed by the T7. Table 4 shows the T7 can achieve
Turing completeness (since it can do everything the F-4 can do) without requiring programs to
modifying their own code.

Table 2: F-4 MISC 16 bit instruction set

Instruction opcode operand operation clock cycles v set
ADDi imm 00 01 16 bit value imm+A→A 3 v
ADDm addr 00 02 16 bit address (addr)+A→A 4 v
ADDpc 00 04 PC+A→A 3 v
BVS addr 00 08 16 bit address (addr)→PC if v=1 3
LDAi imm 00 10 16 bit value imm→A 3
LDAm addr 00 20 16 bit address (addr)→A 3
LDApc 00 40 PC→A 3
STAm addr 00 80 16 bit address A→(addr) 3
STApc 01 00 A→PC 3

Based on http://www.dakeng.com/misc.html. Indirect memory access, e.g. as needed for
arrays or stacks, requires the program to modify addresses held with itself [Kowalczyk, 2005].
See Table 4
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Table 3: Expressing the F-4 MISC with the T7 Instruction Set
Any program written for the F-4 can be rewritten using the new instruction set. I.e. the new
instruction set is also Turing complete.
A memory location in the theoretical machine is used to hold the contents of the F-4 MISC
accumulator (A).
Constants which F-4 keeps in the program (using immediate, or imm, mode) are loaded into
individual designated memory locations in the new machine before the program is started.

F-4 Instruction T7 Implementation
ADDi imm ADD const A A
ADDm addr ADD addr A A
ADDpc COPY PC temp

ADD temp A A
BVS addr BVS addr
LDAi imm COPY const A
LDAm addr COPY addr A
LDApc COPY PC A
STAm addr COPY A addr
STApc JUMP A
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Table 4: Expressing F-4 MISC Array Access with the T7 Instruction Set
To show T7 can provide F-4’s functions without the need for programs to modify their
own address we code array[i] = array [j]+27; in both F-4 and T7 instruction sets.
The F-4 code and explanation is from [Kowalczyk, 2005]. For simplicity, in this ex-
ample, we will assume the T7, like the F-4, data and address word sizes are both 16 bits.

F-4 Instructions
LDAm ”base of array”
STAm ”temp1”
LDAm ”i”
ADDm ”temp1”
STAm ”temp1”

T7 Instructions
COPY ”zero”→0
COPY ”i”→4 //multiply by 16
ADD ”base of array”,0→0

So now ”temp1” (T7 addresses 0..15) is the location of ”array[i]” in memory. We do the same
thing for array[j]+27:

LDAm ”base of array”
STAm ”temp2”
LDAm ”j”
ADDm ”temp2”
ADDi 27
STAm ”temp2”

COPY ”zero”→16
COPY ”j”→20 //multiply by 16
ADD ”base of array”,16→16
ADD ”27”,16→16

Note ”zero” and ”27” are T7 memory locations containing 16 bits values 0 and 27. temp1 and
temp2 are now the array word addresses. All that’s left is to copy one to the other. To do this,
on the F-4 it is necessary to, load the word for the address and write it to the operand byte
only a few instructions ahead:

F-4 Instructions F-4 comments
LDAm ”temp2” ← Address of array[j]+27
STAm ^Operand1 ← This is PC + 6
LDAm ”temp1” ← Address of array[i]
STAm ^Operand2 ← This is PC + 4
LDAm ”Operand1”← This operand word was modified directly by

previous lines; it’s the ”From address of ar-
ray[j]+27”

STAm ”Operand2”← This operand word was also modified by pre-
vious lines; it’s the ”To address of array[i]”

T7 code
STi 16→0

A

practical F-4 implementation would have a number of small routines like the above in the lower
memory segments for things like copying, frequently uses instructions, etc... If the memory
location of the copy operation is not absolute (e.g., not known at compile time), then you can
use LDApc and ADDi to reference the operands since their location is relative to the first two
load and store instructions.
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